
Section 4.2
Maximum and Minimum Values

(1) Absolute and Local Extrema
(2) The Extreme Value Theorem
(3) The Closed Interval Method



Local Extrema
A function f has a local maximum at c if f (c)≥ f (x) for x “near” c .
That is, f (c)≥ f (x) for all x in some open interval containing c .

A function f has a local minimum at c if f (c)≤ f (x) for x “near" c .
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Local Extrema

The term “extremum” is shorthand for “maximum or minimum.”
If f has a local extremum at c , then y = f (c) is a local extreme
value and (c , f (c)) is a local extreme point.
An endpoint of the domain f of cannot be a local extremum,
because it cannot be contained in any open interval in the domain.

A function does not necessarily have to have any local extrema:
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Absolute Extrema
A function f has an absolute maximum at c if f (c)≥ f (x) for all x .

A function f has an absolute minimum at c if f (c)≤ f (x) for all x .

Unless it is an endpoint, each absolute extremum is also a local
extremum.
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Example 1: Absolute Extrema

A function can have at most one absolute maximum value, but any
number of absolute maximum points.

Example 1(a): f (x)= x2 has no absolute maximum, because x2 can
be arbitrarily large.

Example 1(b): f (x)=−x2 has absolute maximum value 0 at the point
(0,0).

Example 1(c): f (x)= cos(x) has absolute maximum value 1 and
infinitely many absolute maximum points: (kπ,1) where k is any even
integer.
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Example 2: Local and Absolute Maxima and
Minima
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Critical Numbers and Fermat’s Theorem

A number c in the domain of f is called a critical number if either
f ′(c)= 0 or f ′(c) does not exist.

Fermat’s Theorem
If f has a local extremum at x = c , and f ′(c) exists, then f ′(c)= 0.

That is, if f has a local max or min at c , then c is a critical number of f .
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Critical Numbers

Fermat’s Theorem
If f has a local extremum at x = c , and f ′(c) exists, then f ′(c)= 0.

That is, if f has a local max or min at c , then c is a critical number of f .

On the other hand, not every critical point must be a local max or min.
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The Extreme Value Theorem
If f is continuous on a closed interval [a,b], then f attains an
absolute maximum value f (c) and an absolute minimum value
f (d) at some numbers c and d in [a,b].
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The Closed Interval Method

The Extreme Value Theorem
If f is continuous on a closed interval [a,b], then f attains an
absolute maximum value f (c) and an absolute minimum value
f (d) at some numbers c and d in [a,b].

How do we systematically find the absolute extrema?

The Closed Interval Method
To find the absolute extreme values of a continuous function f on
a closed interval [a,b]:
(1) Find the values of f at the critical numbers in (a,b).
(2) Find the values of f at the endpoints (namely a and b).
(3) Compare the y -values. The largest value is the absolute

maximum value; the smallest value is the absolute minimum
value.



The Closed Interval Method
Example 3: Find the absolute extrema of f (x)= 2x3−15x2+24x +7 on
the closed interval [0,6].
Note that f is a polynomial, so it is continuous everywhere.



Finding Extrema
Example 4: Find the absolute extrema of h(x)= x4/5(x −4)2 on [1,5].
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